Copied to
clipboard

G = C42.474C23order 128 = 27

335th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.474C23, C4.702+ 1+4, D4210C2, (C4×D8)⋊43C2, C4⋊D839C2, C82D428C2, C86D413C2, C4⋊C841C22, (C4×C8)⋊38C22, C4⋊C4.372D4, C4⋊Q827C22, C22⋊D834C2, D42Q819C2, (C2×D4).322D4, C2.52(D4○D8), C4.4D821C2, (C2×D8)⋊32C22, (C4×D4)⋊29C22, C22⋊C4.55D4, C2.D861C22, C4.Q830C22, D4.31(C4○D4), D4⋊C47C22, C4⋊C4.417C23, C4⋊D420C22, C4.47(C8⋊C22), C22⋊C837C22, (C2×C8).191C23, (C2×C4).517C24, C23.334(C2×D4), (C2×D4).241C23, C41D4.91C22, C2.153(D45D4), C42⋊C227C22, C23.37D419C2, C23.19D439C2, (C2×M4(2))⋊33C22, (C22×C4).330C23, C22.777(C22×D4), C22.49C247C2, (C22×D4).418C22, C4.242(C2×C4○D4), (C2×C4).612(C2×D4), C2.79(C2×C8⋊C22), SmallGroup(128,2057)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.474C23
C1C2C4C2×C4C22×C4C22×D4D42 — C42.474C23
C1C2C2×C4 — C42.474C23
C1C22C4×D4 — C42.474C23
C1C2C2C2×C4 — C42.474C23

Generators and relations for C42.474C23
 G = < a,b,c,d,e | a4=b4=d2=1, c2=a2, e2=b2, ab=ba, cac-1=a-1, dad=ab2, eae-1=a-1b2, cbc-1=dbd=b-1, be=eb, dcd=bc, ece-1=a2b2c, ede-1=b2d >

Subgroups: 576 in 230 conjugacy classes, 88 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C24, C4×C8, C22⋊C8, D4⋊C4, D4⋊C4, C4⋊C8, C4.Q8, C2.D8, C42⋊C2, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C4⋊D4, C4.4D4, C41D4, C4⋊Q8, C2×M4(2), C2×D8, C2×D8, C22×D4, C22×D4, C23.37D4, C86D4, C4×D8, C22⋊D8, C4⋊D8, C82D4, D42Q8, C23.19D4, C4.4D8, D42, C22.49C24, C42.474C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C8⋊C22, C22×D4, C2×C4○D4, 2+ 1+4, D45D4, C2×C8⋊C22, D4○D8, C42.474C23

Character table of C42.474C23

 class 12A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F4G4H4I4J4K4L8A8B8C8D8E8F
 size 11114444888222244444888444488
ρ111111111111111111111111111111    trivial
ρ21111-11-11-11-11111111111-11-1-1-1-1-1-1    linear of order 2
ρ3111111111-111111111-1-1-11-1-1-1-1-1-1-1    linear of order 2
ρ41111-11-11-1-1-11111111-1-1-1-1-1111111    linear of order 2
ρ51111111-1-111-111-1-1-11-1-1-1-111-11-1-11    linear of order 2
ρ61111-11-1-111-1-111-1-1-11-1-1-111-11-111-1    linear of order 2
ρ71111111-1-1-11-111-1-1-11111-1-1-11-111-1    linear of order 2
ρ81111-11-1-11-1-1-111-1-1-111111-11-11-1-11    linear of order 2
ρ91111-1-1-11-1-11-111-1-11-111-1111-11-11-1    linear of order 2
ρ1011111-1111-1-1-111-1-11-111-1-11-11-11-11    linear of order 2
ρ111111-1-1-11-111-111-1-11-1-1-111-1-11-11-11    linear of order 2
ρ1211111-11111-1-111-1-11-1-1-11-1-11-11-11-1    linear of order 2
ρ131111-1-1-1-11-1111111-1-1-1-11-111111-1-1    linear of order 2
ρ1411111-11-1-1-1-111111-1-1-1-1111-1-1-1-111    linear of order 2
ρ151111-1-1-1-111111111-1-111-1-1-1-1-1-1-111    linear of order 2
ρ1611111-11-1-11-111111-1-111-11-11111-1-1    linear of order 2
ρ172222020-2000-2-2-2-222-200000000000    orthogonal lifted from D4
ρ18222202020002-2-22-2-2-200000000000    orthogonal lifted from D4
ρ1922220-202000-2-2-2-22-2200000000000    orthogonal lifted from D4
ρ2022220-20-20002-2-22-22200000000000    orthogonal lifted from D4
ρ212-22-220-2000002-200002i-2i00002i0-2i00    complex lifted from C4○D4
ρ222-22-2-202000002-20000-2i2i00002i0-2i00    complex lifted from C4○D4
ρ232-22-220-2000002-20000-2i2i0000-2i02i00    complex lifted from C4○D4
ρ242-22-2-202000002-200002i-2i0000-2i02i00    complex lifted from C4○D4
ρ254-4-440000000-400400000000000000    orthogonal lifted from C8⋊C22
ρ264-44-400000000-44000000000000000    orthogonal lifted from 2+ 1+4
ρ274-4-440000000400-400000000000000    orthogonal lifted from C8⋊C22
ρ2844-4-40000000000000000000220-22000    orthogonal lifted from D4○D8
ρ2944-4-40000000000000000000-22022000    orthogonal lifted from D4○D8

Smallest permutation representation of C42.474C23
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 28 21 18)(2 25 22 19)(3 26 23 20)(4 27 24 17)(5 12 15 30)(6 9 16 31)(7 10 13 32)(8 11 14 29)
(1 10 3 12)(2 9 4 11)(5 28 7 26)(6 27 8 25)(13 20 15 18)(14 19 16 17)(21 32 23 30)(22 31 24 29)
(1 3)(2 24)(4 22)(5 10)(6 29)(7 12)(8 31)(9 14)(11 16)(13 30)(15 32)(17 19)(18 26)(20 28)(21 23)(25 27)
(1 24 21 4)(2 3 22 23)(5 8 15 14)(6 13 16 7)(9 32 31 10)(11 30 29 12)(17 18 27 28)(19 20 25 26)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,28,21,18)(2,25,22,19)(3,26,23,20)(4,27,24,17)(5,12,15,30)(6,9,16,31)(7,10,13,32)(8,11,14,29), (1,10,3,12)(2,9,4,11)(5,28,7,26)(6,27,8,25)(13,20,15,18)(14,19,16,17)(21,32,23,30)(22,31,24,29), (1,3)(2,24)(4,22)(5,10)(6,29)(7,12)(8,31)(9,14)(11,16)(13,30)(15,32)(17,19)(18,26)(20,28)(21,23)(25,27), (1,24,21,4)(2,3,22,23)(5,8,15,14)(6,13,16,7)(9,32,31,10)(11,30,29,12)(17,18,27,28)(19,20,25,26)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,28,21,18)(2,25,22,19)(3,26,23,20)(4,27,24,17)(5,12,15,30)(6,9,16,31)(7,10,13,32)(8,11,14,29), (1,10,3,12)(2,9,4,11)(5,28,7,26)(6,27,8,25)(13,20,15,18)(14,19,16,17)(21,32,23,30)(22,31,24,29), (1,3)(2,24)(4,22)(5,10)(6,29)(7,12)(8,31)(9,14)(11,16)(13,30)(15,32)(17,19)(18,26)(20,28)(21,23)(25,27), (1,24,21,4)(2,3,22,23)(5,8,15,14)(6,13,16,7)(9,32,31,10)(11,30,29,12)(17,18,27,28)(19,20,25,26) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,28,21,18),(2,25,22,19),(3,26,23,20),(4,27,24,17),(5,12,15,30),(6,9,16,31),(7,10,13,32),(8,11,14,29)], [(1,10,3,12),(2,9,4,11),(5,28,7,26),(6,27,8,25),(13,20,15,18),(14,19,16,17),(21,32,23,30),(22,31,24,29)], [(1,3),(2,24),(4,22),(5,10),(6,29),(7,12),(8,31),(9,14),(11,16),(13,30),(15,32),(17,19),(18,26),(20,28),(21,23),(25,27)], [(1,24,21,4),(2,3,22,23),(5,8,15,14),(6,13,16,7),(9,32,31,10),(11,30,29,12),(17,18,27,28),(19,20,25,26)]])

Matrix representation of C42.474C23 in GL6(𝔽17)

1150000
1160000
00161500
001100
000012
00001616
,
100000
010000
00161500
001100
000012
00001616
,
1380000
040000
000010
000001
0016000
0001600
,
100000
010000
0016000
001100
00001615
000001
,
1600000
1610000
00161500
001100
00001615
000011

G:=sub<GL(6,GF(17))| [1,1,0,0,0,0,15,16,0,0,0,0,0,0,16,1,0,0,0,0,15,1,0,0,0,0,0,0,1,16,0,0,0,0,2,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,1,0,0,0,0,15,1,0,0,0,0,0,0,1,16,0,0,0,0,2,16],[13,0,0,0,0,0,8,4,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,1,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,15,1],[16,16,0,0,0,0,0,1,0,0,0,0,0,0,16,1,0,0,0,0,15,1,0,0,0,0,0,0,16,1,0,0,0,0,15,1] >;

C42.474C23 in GAP, Magma, Sage, TeX

C_4^2._{474}C_2^3
% in TeX

G:=Group("C4^2.474C2^3");
// GroupNames label

G:=SmallGroup(128,2057);
// by ID

G=gap.SmallGroup(128,2057);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,560,253,456,758,723,2019,346,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=1,c^2=a^2,e^2=b^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a*b^2,e*a*e^-1=a^-1*b^2,c*b*c^-1=d*b*d=b^-1,b*e=e*b,d*c*d=b*c,e*c*e^-1=a^2*b^2*c,e*d*e^-1=b^2*d>;
// generators/relations

Export

Character table of C42.474C23 in TeX

׿
×
𝔽